刘天, 张丽杰, 翁熹君, 姚梦雷, 黄继贵, 陈红缨, 黄淑琼, 杨雯雯, 蔡晶, 吴然
目的 探讨GM(1,1)模型、单纯自回归滑动平均(autoregressive integrated moving average,ARIMA)模型及其组成的2种组合模型在甲肝发病数预测中的应用。方法 利用某省2009年1月—2013年12月的甲肝逐月发病数作为拟合数据,以2014年1—12月的逐月发病数作为预测数据;分别建立GM(1,1)模型、ARIMA模型、GM(1,1)-ARIMA组合模型、变权组合模型,然后根据4个模型的平均绝对百分比误差(mean absolute percentage error,MAPE)、平均误差率(Mean Error Rate,MER) 、均方误差(mean square error,MSE)和平均绝对误差(mean absolute error,MAE)评价模型的效果。结果 GM(1,1)模型、ARIMA模型、GM(1,1)-ARIMA组合模型和变权组合模型的拟合、预测的MAPE、MER、MSE和MAE依次分别为20.01%,18.35%,115.98,10.96和28.79%,31.84%,32.96,8.01;21.35%,19.52%,120.75,11.66和32.41%,35.65%,36.18,8.97;17.20%,15.69%,88.07,9.07和31.17%,34.17%,34.57,8.60;18.82%,16.99%,107.82,10.15和19.19%,18.67%,20.74,4.70。结论 组合模型拟合及预测效果优于单一模型;变权组合模型为最优预测模型。