## · 实验研究与卫生检验 ·

# 胃癌组织中 Aurora-A 及 TACC3 的表达及意义

曾亚,王新平,申月明,朱德茂 长沙市中心医院消化内科,湖南 长沙 410004

摘要: 目的 研究胃癌组织、异型增生组织和正常胃粘膜组织中 Aurora-A 和 TACC3 的表达水平及其临床病理意义。 方法 采用免疫组化检测胃癌、异型增生组织和正常胃粘膜中 Aurora-A、TACC3 的表达,通过 Log-rank 检验、Cox 多因素分析,揭示 Aurora-A、TACC3 的表达与胃癌生物学行为的关系。 结果 正常胃粘膜组织中 Aurora-A 蛋白均为阴性;异型增生组织中阳性率 50.0%;而在胃癌组织中阳性率 74.0%,正常胃粘膜组织中 TACC3 阳性率为 4.16%;TACC3 在异型增生组织阳性率为 40.0%;癌组织中阳性率为 64.00%;Aurora-A 和 TACC3 在进展期胃癌中表达率分别为 78.57%、69.0%,在早期胃癌的表达率分别为 50%、37.5%;Aurora-A、TACC3 的阳性表达与肿瘤的分化程度、是否伴有淋巴结转移显著相关,差异均有统计学意义(P<0.05),分化程度越低,Aurora-A、TACC3 表达越高;有淋巴结转移的胃癌组织中 Aurora-A、TACC3 表达越强;生存曲线分析显示 Aurora-A 及 TACC3 阳性的胃癌患者生存时间比表达阴性组短,差异有统计学意义(P<0.05)。单因素 Log-rank 检验表示,Aurora-A,TACC3 阳性表达对患者生存率具有影响,相对危险度分别为 2.35、2.01。 结论 Aurora-A和 TACC3 蛋白参与胃癌细胞的发生、发展,可以作为胃癌恶性程度及预后的评价指标关键词; Aurora-A;TACC3;胃癌;免疫组化

中图分类号:R735.2 文献标识码:B 文章编号:1006-3110(2016)10-1257-03 DOI:10.3969/j.issn.1006-3110.2016.10.035

胃癌是最常见的消化道肿瘤之一,发病机制仍有待研究。Aurora—A 是 Aurora 激酶家族中的成员,属于丝氨酸/苏氨酸激酶,除了参与细胞有丝分裂外,它们还参与多种生物学进程,目前研究表明 Aurora—A 参与肿瘤发生、发展,且被确认是新的癌基因[1]。TACC3蛋白是中心体主轴的组成蛋白,不仅可以影响细胞的有丝分裂,还可以调节染色体的稳定性[2]。至今为止,Aurora—A 及 TACC3 是否与胃癌有关,是否影响胃癌的生物学行为,均未见相关报道。本文采用 SP 法检测不同胃黏膜组织中 Aurora—A 和 TACC3 的表达,并探讨与临床病理特征的关系。

#### 1 材料与方法

1.1 组织标本与临床资料 标本取自长沙市中心 医院 2010 年 7 月 - 2012 年 6 月间的手术切除标本或 者胃镜活检标本。经 2 位高职称的病理医师阅片,其中胃癌标本 50 例、异型增生标本 20 例,正常胃粘膜标本 24 例作为本研究的观察对象,胃癌均为手术标本,所有胃癌患者术前均未接受放疗、化疗或者生物治疗。 收集临床资料,其中 34 例男性、16 例女性患者,年龄在 33~75 岁的区间,平均年龄 57.15 岁,按组织学分类,其中 13 例高分化腺癌、11 例中分化腺癌、23 例低分化腺癌(包括 5 例印戒细胞癌)、3 例未分化腺癌,确

基金项目:湖南省医药卫生科研计划课题(C2011-015) 作者简介:曾亚(1963-),女,湖南泸溪人,主任医师,主要从事临床内科工作, E-mail:zengya2010@126.com。 定伴有淋巴结转移 36 例,术后随访时间 32~57 个月。 1.2 试剂与方法

- 1.2.1 主要试剂 一抗鼠抗人 Aurora-A 单克隆抗体(美国 Santa Cruz 公司),一抗 TACC3 多克隆抗体(EPitomics 公司),二抗、SP 免疫组化试剂盒、DAB 显色剂购自福州迈新公司。
- 1.2.2 免疫组化 免疫组织化学方法(SP法)检测不同胃组织中 Aurora—A 及 TACC3 的表达。新鲜标本离体后 30 min 内在冰上分离,再固定,包埋,切片,脱蜡水化,灭活内源性过氧化物酶,抗原修复,滴加一抗(Aurora—A,TACC3),置于 4 ℃冰箱过夜;再滴加二抗,37 ℃恒温箱孵育 30 min,DAB 显色,苏木素复染,脱水,透明,封片,阴性对照组以 PBS 替代一抗。
- 1.2.3 免疫组化结果判定 Aurora-A 阳性呈棕黄色颗粒,分别细胞浆和细胞核表达。TACC3 阳性亦呈棕黄色颗粒,主要在细胞浆表达,在高倍镜下(400×)随机选5个视野,计算阳性细胞比率。阴性为0分,阳性率<25%计1分,阳性率25%~50%计2分,51%~75%计3分,阳性率>75%计4分;染色强度评分标准:弱阳性计1分,中度阳性计2分,强阳性计3分,总分等于阳性率评分加染色强度评分,分别对 Aurora-A、TACC3表达做半定量评判:总分在0~3分之间阴性,4~7分之间为阳性。
- 1.2.4 统计学分析 采用 SPSS19.0 软件进行统计学分析。计数资料采用卡方检验,使用 Log-rank 检验、Cox 多因素分析,分析 Aurora-A、TACC3 的表达与胃癌

生物学行为的关系,P<0.05 为差异有统计学意义。

#### 2 结 果

2.1 不同胃粘膜组织中 Aurora-A 及 TACC3 的表达 Aurora-A 阳性表达表现为细胞浆和细胞核内出现 棕黄色或淡黄色颗粒改变(图 1 A、B、C),阴性对照未见棕黄色改变。正常胃粘膜组织中 Aurora-A 蛋白均为阴性;Aurora-A 蛋白在 20 例异型增生组织中阳性率 50.0%;而在胃癌组织中阳性率 74.00%,明显高于异型增生组织和正常胃粘膜组织(X²=35.520,P=0.000);而且从表1可见从正常胃粘膜组织→异型增

生→胃癌组织的过程中, Aurora—A 的阳性表达逐渐增加。TACC3 阳性表达为细胞浆和细胞核内出现棕黄色或淡黄色颗粒改变(图 1D、E、F), 阴性对照未见棕黄色颗粒。正常胃粘膜组织中 TACC3 阳性率为 4.16%; TACC3 在异型增生组织阳性率为 40%; 癌组织中阳性率为 64.00%, 明显高于异型增生组织和正常组织( $\chi^2$ =23.724,P=0.000); 而 TACC3 在异型增生组织的阳性率也明显高于正常粘膜, 差异有统计学意义。从表1 可见从正常胃粘膜组织→异型增生→胃癌组织的过程中, TACC3 的阳性表达逐渐增加。

表 1 不同胃粘膜组织中 Aurora-A、TACC3 的表达

| AH AH | tol #k | Aurora-A |    | 阳性表达率    | TA | CC3 | 阳性表达率  |
|-------|--------|----------|----|----------|----|-----|--------|
| 组织    | 例数     | 阳性       | 阴性 | (%)      | 阳性 | 阴性  | (%)    |
| 正常胃粘膜 | 24     | 0        | 24 | 0.00     | 1  | 23  | 4. 1   |
| 异型增生  | 20     | 10       | 10 | 50. 00 * | 8  | 12  | 40.0*  |
| 胃癌    | 50     | 37       | 13 | 74. 00#  | 32 | 18  | 64. 0# |

注:与正常胃粘膜组比较,\*P<0.01;与非典型增生组比较,#P<0.01。

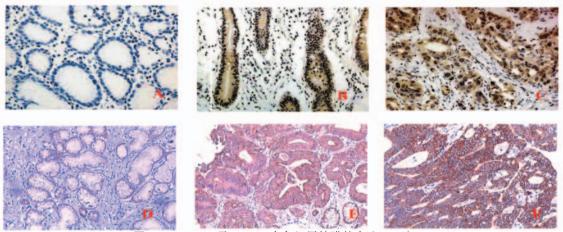



图 1 Aurora-A 及 TACC3 在各组胃粘膜的表达(SP 法,×200)

A. Aurora-A 在正常胃粘膜组织的表达;B. Aurora-A 在非典型增生组织的表达;C. Aurora-A 在胃癌组织的表达;D. TACC3 在正常胃粘膜组织的表达;E. TACC3 在非典型增生组织的表达;F. TACC3 在胃癌组织的表达

表 2 Aurora-A 及 TACC3 蛋白表达与胃癌临床病理特征的关系

| 临床特征         | Aurora-A |    |        |                  | TACC3  |    |        |                  |        |
|--------------|----------|----|--------|------------------|--------|----|--------|------------------|--------|
| <b>加水付</b> 征 | 例数       | 阳性 | 阳性率(%) | X <sup>2</sup> 值 | P 值    | 阳性 | 阳性率(%) | X <sup>2</sup> 值 | P 值    |
| 年龄(岁):<55    | 19       | 14 | 73. 68 | 0.001            | 0. 968 | 13 | 68. 42 | 0. 259           | 0. 610 |
| ≥55          | 31       | 23 | 74. 19 |                  |        | 19 | 61. 29 |                  |        |
| 性别:男         | 34       | 25 | 73. 52 | 0.012            | 0.919  | 22 | 64. 70 | 0.023            | 0. 879 |
| 女            | 16       | 12 | 75. 0  |                  |        | 10 | 62. 5  |                  |        |
| 期别:早期        | 8        | 4  | 50. 0  | 2. 851           | 0.091  | 3  | 37. 5  | 2.902            | 0. 088 |
| 进展期          | 42       | 33 | 78. 57 |                  |        | 29 | 69. 0  |                  |        |
| 分化程度:高分化     | 13       | 7  | 53. 84 | 5. 216           | 0.034  | 5  | 38. 46 | 6. 349           | 0. 015 |
| 中分化          | 11       | 8  | 72. 72 |                  |        | 7  | 63. 6  |                  |        |
| 低分化          | 23       | 19 | 82. 6  |                  |        | 17 | 73. 9  |                  |        |
| 未分化          | 3        | 3  | 100. 0 |                  |        | 3  | 100. 0 |                  |        |
| 淋巴结转移:无转移    | 14       | 6  | 42. 85 | 9. 801           | 0.001  | 4  | 28. 57 | 10. 59           | 0. 001 |
| 有转移          | 36       | 31 | 86. 11 |                  |        | 28 | 77. 78 |                  |        |

2.2 胃癌组织中 Aurora-A、TACC3 的表达与临床病理特征的关系 见表 2。Aurora-A 和 TACC3 在进展期胃癌中表达率分别为 78.57%、69%, 在早期胃癌的

表达率分别为 50%、37.5%;分化程度越低, Aurora-A、TACC3 表达越高;有淋巴结转移的胃癌组织中 Aurora-A、TACC3 表达越强, 因此 Aurora-A、TACC3 的阳性

表达与肿瘤的分化程度、是否伴有淋巴结转移显著相关,差异均有统计学意义(*P*<0.05)。二种蛋白的表达在不同的年龄、不同性别的胃癌无差异性。

2.3 Aurora-A与TACC3蛋白表达与预后的关系 分别对 50 例胃癌患者进行随访,持续时间为 32~57 月,中位时间为 28.81 月,其中 32 例死亡, Aurora-A 阴性患者中位生存时间为 40.98 月, Aurora-A 阳性中 位生存时间为 25.96 月, 阴性组中位生存期明显较阳 性组高, TACC3 阴性中位生存时间为 41.45 月, TACC3 阳性中位生存时间为 26.85 月.提示 Aurora-A 及 TACC3 可以作为胃癌的负性预后因子。生存曲线 分析显示 Aurora-A 及 TACC3 阳性的胃癌患者生存时 间比表达阴性组短,差异有统计学意义(P<0.05)。单 因素 Log-rank 检验表示, Aurora-A、TACC3 阳性表达 对患者生存率具有影响,差异有统计学意义(P< 0.05),Cox 回归多因素分析表明,多因素包括年龄、性 别、胃癌浸润深度、分化程度、有无淋巴结转移、Aurora -A、TACC3 阳性表达, Aurora-A、TACC3 阳性, 肿瘤浸 润深度、淋巴结转移均可以作为影响胃癌预后的独立 因素,见表3。

表 3 临床病理参数与胃癌预后关系的 Cox 回归多因素分析结果

| 临床病理参数   | Wald  | P     | 相对危险度 | 95%可信区间      |
|----------|-------|-------|-------|--------------|
| Aurora-A | 5. 12 | 0.021 | 2. 35 | 1.06,6.06    |
| TACC3    | 4. 15 | 0.032 | 2.01  | 0.96,5.78    |
| 分化程度     | 0.49  | 0.821 | 0.92  | 0.40,2.01    |
| 浸润深度     | 4. 92 | 0.027 | 2. 27 | 1.01,5.94    |
| 淋巴转移     | 6. 92 | 0.011 | 3. 24 | 1. 12, 8. 23 |

### 3 讨论

胃癌是消化道最常见的恶性肿瘤之一,也是导致 死亡的主要原因之一。AuroraA 激酶家族属于丝/苏 氨酸酶,目前研究表明它不仅参与中心体、纺锤体的调 节、还在染色体的分离、有丝分裂过程中扮演重要的角 色。同时也是维持基因组稳定性所必需的,研究发现, Aurora-A 作在多种肿瘤中表达升高,如食管癌、结肠 癌、宫颈癌、前列腺癌等[3-5],因此它已被确认是一种 的癌基因。TACC 主要功能,包括中心体处聚集,调控 微管蛋白的组成,参与细胞的有丝分裂,维持染色体的 稳定性,研究发现 TACC3 蛋白可能参与乳腺癌或妇科 肿瘤的发生发展。TACC 是的 Aurora-A 下游底物分 子之一,它可以被磷酸化酶磷酸化后,参与调节中心 体、纺锤体、染色体或参与细胞骨架的构建<sup>[6]</sup>。TACC3 -ch-TOG 网格蛋白在癌细胞的发生发展中起着很重 要的作用。这种蛋白主要活跃于有丝分裂纺锤体形成 过程中,而纺锤体功能过于活跃则是细胞癌变的一个 主要原因。研究人员发现在癌症细胞中,这种网格蛋白与正常细胞有很大差别,一旦将这种蛋白阻断后,癌症细胞将无法正常分裂而走向死亡<sup>[7]</sup>。研究通过研究胃癌组织中 Aurora-A 及 TACC3 的表达,揭示二种蛋白表达与临床病理关系。

本研究发现正常胃粘膜上皮细胞中 Aurora-A 为阴性,TACC3 表达很低,在异型增生组织中等表达,胃癌组织中阳性率最高,差异有统计学意义。目前研究 Aurora-A 及 TACC3 在胃癌中虽然阳性率高,但高表达的 Aurora-A 并不能引起所有肿瘤细胞系向恶性转化,提示 Aurora-A 和其他基因共同参与在恶性肿瘤的发生发展[8]。本资料结果显示进展期胃癌、中低分化、伴有淋巴结转移的病例 Aurora-A、TACC3 表达阳性明显高于早期胃癌、高分化、无淋巴结转移的病例,差异有统计学意义,二种蛋白的表达在不同的年龄、不同性别的胃癌无差异性。说明 Aurora-A、TACC 蛋白不但参与胃癌的发生,而且还参与肿瘤的分化、侵袭及转移,具体机制有待于进一步研究。

单因素分析结果显示, Aurora-A 阳性组预后较Aurora-A 阴性组预后差, TACC3 阳性组比 TACC3 阴性组预后差, 多因素生存分析显示 Aurora-A、TACC3 为独立预后因素, 这二种蛋白可以作为胃癌恶性程度及预后的评价指标, 由于 Aurora-A 表达增加可以促进中心体扩增, 染色体不稳定性增加, 从而改变肿瘤细胞的生物学行为, 获得更具有侵袭性的遗传表型, 而肿瘤高侵袭性正是导致肿瘤预后不良的主要原因之一[3,9-10], 但是它们的具体作用机制还不是很明确,需要我们进一步研究。

#### 参考文献

- Kelly KR, Ecsedy J, Mahalingam D, et al. Targeting aurora kinases in cancer treatment [J]. Curr Drug Targets, 2011,12(14):2067-2078.
- [2] Hood FE, Royle SJ. Pulling it together: The mitotic function of TACC3[J]. Bioarchitecture, 2011,1(3):105-109.
- [3] Do TV, Xiao F, Bickel L E, et al. Aurora kinase A mediates epithelial ovarian cancer cell migration and adhesion [J]. Oncogene, 2014, 33 (5):539-549.
- [4] Mehra R, Serebriiskii IG, Burtness B, et al. Aurora kinases in head and neck cancer [J]. Lancet Oncol, 2013,14(10):e425-e435.
- [5] 张潍, 王建, 辛晓燕, 等. Aurora-A 过表达与宫颈癌进展及预后的关系[J]. 中国实用妇科与产科杂志, 2012, 28(4): 280-283.
- [6] Mahdipour M, Leitoguinho AR, Zacarias SR, et al. TACC3 is important for correct progression of meiosis in bovine oocytes[J]. PLoS One, 2015, 10(7); e132591.
- [7] Hood FE, Williams SJ, Burgess SG, et al. Coordination of adjacent domains mediates TACC3-ch-TOG-clathrin assembly and mitotic spindle binding[J]. J Cell Biol, 2013,202(3):463-478.
- [8] Umene K, Yanokura M, Banno K, et al. Aurora kinase A has a significant role as a therapeutic target and clinical biomarker in endometrial cancer [J]. Int J Oncol, 2015,46(4):1498-1506.
- [9] de Martino M, Shariat SF, Hofbauer SL, et al. Aurora A Kinase as a diagnostic urinary marker for urothelial bladder cancer [J]. World J Urol, 2015,33(1):105-110.
- [10] 刘恩伊, 钟美佐, 刘巍, 等. 青年胃癌的发病及临床病理特点 [J]. 实用预防医学, 2010,17(3):544-546.

收稿日期:2016-01-30